Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices

نویسندگان

  • Ming Gu
  • Xiaoye S. Li
  • Panayot S. Vassilevski
چکیده

DIRECTION-PRESERVING AND SCHUR-MONOTONIC SEMISEPARABLE APPROXIMATIONS OF SYMMETRIC POSITIVE DEFINITE MATRICES∗ MING GU† , XIAOYE S. LI‡ , AND PANAYOT S. VASSILEVSKI§ Abstract. For a given symmetric positive definite matrix A ∈ RN×N , we develop a fast and backward stable algorithm to approximate A by a symmetric positive definite semiseparable matrix, accurate to a constant multiple of any prescribed tolerance. In addition, this algorithm preserves the product, AZ, for a given matrix Z ∈ RN×d, where d N . Our algorithm guarantees the positivedefiniteness of the semiseparable matrix by embedding an approximation strategy inside a Cholesky factorization procedure to ensure that the Schur complements during the Cholesky factorization all remain positive definite after approximation. It uses a robust direction-preserving approximation scheme to ensure the preservation of AZ. We present numerical experiments and discuss the potential implications of our work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Efficient and Robust HSS Cholesky Factorization of SPD Matrices

In this paper, we propose a robust Cholesky factorization method for symmetric positive definite (SPD), hierarchically semiseparable (HSS) matrices. Classical Cholesky factorizations and some semiseparable methods need to sequentially compute Schur complements. In contrast, we develop a strategy involving orthogonal transformations and approximations which avoids the explicit computation of the...

متن کامل

A Levinson-like algorithm for symmetric positive definite semiseparable plus diagonal matrices

In this paper a Levinson-like algorithm is derived for solving symmetric positive definite semiseparable plus diagonal systems of equations. In a first part we solve a Yule-Walker-like system of equations. Based on this O(n) solver an algorithm for a general right-hand side is derived. The new method has a linear complexity and takes 19n − 13 operations. The relation between the algorithm and a...

متن کامل

Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices

Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...

متن کامل

A Cholesky Lr Algorithm for the Positive Definite Symmetric Diagonal-plus- Semiseparable Eigenproblem

We present a Cholesky LR algorithm with Laguerre’s shift for computing the eigenvalues of a positive definite symmetric diagonal-plus-semiseparable matrix. By exploiting the semiseparable structure, each step of the method can be performed in linear time.

متن کامل

A hierarchy of LMI inner approximations of the set of stable polynomials

Exploiting spectral properties of symmetric banded Toeplitz matrices, we describe simple sufficient conditions for positivity of a trigonometric polynomial formulated as linear matrix inequalities (LMI) in the coefficients. As an application of these results, we derive a hierarchy of convex LMI inner approximations (affine sections of the cone of positive definite matrices of size m) of the non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010